
25/09/2014

1

Software defects:
Stay Away from them.

Do Inspections!

Guilherme Horta Travassos
Universidade Federal do Rio de Janeiro

COPPE/PESC

CNPq Researcher, ISERN Member

ght@cos.ufrj.br

www.cos.ufrj.br/~ght

QUATIC 2014

2

Agenda

Software Systems
Characteristics
Software Engineers Reality

Software Systems Development Issues
Software Defects
Inspection Method and Techniques
Evidence on Software Inspections (academia and
industry)
Conclusion

mailto:ght@cos.ufrj.br
http://www.cos.ufrj.br/~ght

25/09/2014

2

Software Systems

used largely by people other than system
developers

users may be from different background, so a
proper user interface must be provided

portability is key

It must be thoroughly verified, validated and tested
before its operational use

Software Systems
Early years
Custom Software
Standalone
Batch

Second Stage
Multi-user
Real-time
Database
Product Software

Third Stage
Distributed Systems
Embedded “intelligence”
Low cost hardware
Consumer Impact

Fourth Stage
Powerful desk-top systems
Object-oriented technologies
Expert systems
Artificial neural networks
Parallel computing
Network computers

Fifth Stage
Multi-skilled, geographically distributed
development
Componentry (reuse and recycling)
Development and evolution models,
including biological analogies
Interdependence among design, business,
and evaluation
Agile software manufacture
Empowering the domain expert (vs.
maintaining integrity)
Non-scripting development languages

1950 1960 1970 1980 1990 2000 2010

1
2

3
4

5 !? 6

2022

Sixth Stage
“mobile” apps
Large Scale Science (e-science) with intensive use of e-infrastructure
Ubiquitous Systems (systems of systems)

Adapted from PRESSMAN, R. S. , 1994, “Software Engineering: A Practitioner’s

Approach”, European Edition, McGraw-Hill.

25/09/2014

3

Software Systems

System Software Real-Time Software

Business Software Embedded Software

Engineering and Scientific Software

Personal Computer Software

Artificial Intelligence Software

Ubiquitous Software Mobile Apps

Systems of Systems

System Software:100

Real-Time Software: 180

Business Software: 250

Engineering and Scientific Software: 140

Embedded Software: 300

Personal Computer Software: 190

Artificial Intelligence Software: 120

Ubiquitous Software: 130

Mobile Apps:320

Software Systems

1950 1960 1970 1980 1990 2000 2010

1
2

3
4

5 !? 6

2022

Total knowledge needed to
 create complex software

Stable core

Adapted from PRESSMAN, R. S. , 1994, “Software Engineering: A Practitioner’s

Approach”, European Edition, McGraw-Hill.

25/09/2014

4

Some Software Systems
Characteristics

Software can not be manufactured (in the classical sense)

X

Software costs concentrate in engineering

Some Software Systems
Characteristics

Software doesn’t “wear out”, but it deteriorates

Hardware

Software

X

25/09/2014

5

Some Software Systems
Characteristics

Custom-built rather than assembled from existing
(quality) components

X

Some Software Systems
Characteristics

Hardware advancements continue to outpace our ability to build
software to tap hardware’s potential

Computers everywhere demand software that have made
society increasingly dependent on high dependability
systems.

25/09/2014

6

 Software Engineers Reality...

All software systems fail…

All software systems fail…

• A full list of evidence at http://catless.ncl.ac.uk/Risks/

– John Oates, Who's to blame this time? *The Register*, 26 Nov 2009 “The
London Stock Exchange has suffered yet another systems crash, leaving brokers high
and dry since 9.30 this morning. The Exchange last went down in September 2008
and took almost the entire day to get back online. That outage, on one of the
Exchange's busiest days, was the day after the $200bn bailout of US housing giants
Freddie Mac and Fannie Mae, leading to lots of conspiracy theories. [It resumed
operation at 14.00.]”

– Hacking ring steals $9 million from ATMs globally “According to an FBI press
release, a global ring of hackers broke into an unnamed American credit processing
company, stole PIN numbers, manipulated accounts, and proceeded to steal 9 million
USD from over 2000 ATM machines world-wide. (They have just been brought to
justice.)”

– Total Parenteral Nutrition software recall “Total parenteral nutrition
(intravenous feeding) is complicated to administer and there are tools to assist in the
preparation of individualized dosing. Because such nutrition is typically administered
weeks to years and the composition needs to change frequently (in instances, daily)
and because patients receiving this sort of treatment are invariably quite ill, even
relatively small flaws in the calculations can produce significant physiological
disturbances.”

. . .

http://catless.ncl.ac.uk/Risks/

25/09/2014

7

Software Systems:
related persistent problems

We struggle to build high reliability and quality software
However, our ability to support and enhance existing software is still
threatened by poor design and insufficient resources

Software
Changing
Relative Costs

1x

1.5-6x

60-100x

Specification Development After Deployment

 Software Engineers Reality...

All software systems fail…

25/09/2014

8

 Software Engineers Reality...

Software systems construction
does not follow a smooth

pathway…

In general, it follows a Software
Development Process specifying:

the adopted software life-cycle and paradigm
the software technologies (methods, tools) to be
used throughout the development time
who participates (roles) and when
the management, quality and verification,
validation and testing plans

Software Systems Construction

It defines how multiple developers can communicate and cooperate

25/09/2014

9

Software Systems Construction
Some software life-cycle shapes

Requirements
Analysis

System
Design

Program
Design

Coding

Unit & Integration
Testing

System
Testing

Acceptance Testing

Delivery &
Maintenance

verify code

verify design

validate requirements

Requirements Analysis

System Design

Programs Design

Coding

Unit and Integration Testing

System Testing

Acceptance Testing

Deployment and
Maintenance

Prototyping

validation

verification

 Software Engineers Reality...

Software Development Processes
demand software technologies, but...

25/09/2014

10

Some Software Technologies Pitfalls...
As it has been recently commented by Forrest Shull (Keynote at ICGSE, 2012):

Requirements Elicitation: 30 studies covering 43 different techniques over 20
years of research

Dieste, O., Juristo, N., and Shull, F. “Understanding the Customer: What Do
We Know about Requirements Elicitation?” IEEE Software, vol. 25, no. 2, pp.

11-13, March/April 2008.

SW Process Capability/Maturity Models: 61 studies; 52 process models.
von Wangenheim, C., Hauck, J., Zoucas, A., Salviano, C.,

McCaffery, F., and Shull, F. “Creating Software Process Capability / Maturity
Models,” IEEE Software, vol. 27, no. 4, pp. 92-94, July / August 2010.

Distributed SW Development: “Few of the models from our review were
evaluated…”

Prikladnicki, R., Audy, J. L. N., and Shull, F. “Patterns in Effective
Distributed Software Development,” IEEE Software, vol. 27, no. 2, pp. 12-15,

March / April 2010.

SPL Testing Techniques: 60% of papers describe “solutions or conceptual
proposals,” while “just a few” report experiences from real development
environments.

da Mota Silveira Neto, P.A.; Runeson, P.; do Carmo Machado, I.; de Almeida,
E.S.; de Lemos Meira, S.R.; Engstrom, E.; , "Testing Software Product Lines,"

Software, IEEE , vol.28, no.5, pp.16-20, Sept.-Oct. 2011.

Some Software Technologies Pitfalls...
And also observed in some of our investigations:

Cost Estimation Models: 11 studies (including 2 replications) using different data

sets. No evidence about feasibility of models nor possibility of aggregation
Kitchenham, B. ; Mendes, E. ; Travassos, G. H. (2007).

 Cross versus within-company cost estimation studies: A systematic review. IEEE Transactions on Software Engineering, v. 33, p. 316-329, 2007.
http://dx.doi.org/10.1109/TSE.2007.1001

Model based Testing: from 85 selected papers (representing 71 approaches), 27%

are speculative, 45% just present simple using examples, 15% show proof of
concepts, 5% report some experience and 8% have been experimented.

 Dias Neto, A. C. ; Subramanyan, R. ; Vieira, M. E. R. ; Travassos, G. H. ; Shull, F. .(2008)

Improving evidence about software technologies: A look at model-based testing. IEEE Software, v. 25, p. 10-13, 2008.
http://dx.doi.org/10.1109/MS.2008.64

Testing Stop Criteria: 74 criteria (3 repeated) resulting in 108 variations. Most of

them regard software reliability. Others are specific. Just 27% have been
evaluated, without evidence about their feasibility (no context indication)

Vidigal, V., Travassos, G. H. (2013). A quasi -systematic review on Testing Stop Criteria. WAMPS 2013.

http://lattes.cnpq.br/4143582724454168
http://lattes.cnpq.br/9112415346373126

25/09/2014

11

Some Software Technologies Pitfalls...
And also observed in some of our investigations:

Agility Characteristics and Agile Practices: More relevant characteristics to

introduce agility in software processes are concerned with communication,
understandability and adaptation (not with agile methods). The agile practices
Presence of Client and Planning Poker are not relevant. However, Continuous
Integration and Backlog are highly relevant.

De Mello, R.M.; Silva, P.C.; Travassos, G.H. (2014).
 Agility in Software Processes: Evidence on Agility Characteristics and Agile Practices. SBQS 2014.

Estimation of Software Testing Effort: There is no consensus about software

testing and what can be considered effort regarding it. Therefore, current
models and factors are not generically adequate and to use one or another
model is risky.

 Souza, T.S.; Ribeiro, V. V.; Travassos, G.H. (2014).

Software Testing Estimation Effort: Models, Factors and Uncertainties. CACIC 2014 (in press)

 Software Engineers Reality...

Software Development Processes require
communication and collaboration among

developers and stakeholders…

25/09/2014

12

Tacit requirements

Loan-Arranger Requirements Specification – Jan. 8, 1999

Background

Banks generate income in many ways, often by borrowing money from their depositors

at a low interest rate, and then lending that same money at a higher interest rate in the

form of bank loans. However, property loans, such as mortgages, typically have terms of

15, 25 or even 30 years. For example, suppose that you purchase a $150,000 house with

a $50,000 down payment and borrow a $100,000 mortgage from National Bank for

thirty years at 5% interest. That means that National Bank gives you $100,000 to pay the

balance on your house, and you pay National Bank back at a rate of 5% per year over a

period of thirty years. You must pay back both principal and interest. That is, the initial

principal, $100,000, is paid back in 360 installments (once a month for 30 years), with

interest on the unpaid balance. In this case the monthly payment is $536.82. Although

the income from interest on these loans is lucrative, the loans tie up money for a long

time, preventing the banks from using their money for other transactions. Consequently,

the banks often sell their loans to consolidating organizations such as Fannie Mae and

Freddie Mac, taking less long-term profit in exchange for freeing the capital for use in

other ways.

 Specified Lender

Investor

Fanny May

Receive Reports

Monthly Report

Investment Request

Request

Generate Reports

Loan Analyst

Fixed_Rate Loan

risk()
principal_remaining()

Variable_Rate Loan

principal_remaining : number

risk()
principal_remaing()

Lender

name : text
id : text
contact : text
phone_number : number

Borrower

name : text
id : number
risk : number
status : text

risk()
set_status_good()
set_status_late()
set_status_default()
borrower_status()
set_status()

Bundle

active time period : date
profit : number
estimated risk : number
total : number
loan analyst : id_number
discount_rate : number
investor_name : text
date_sold : date

risk()
calculate_profit()
cost()

Loan Arranger

rec_monthly_report()
inv_request()
generate reports()
identify_report_format()
verify_report()
look_for_a_lender()
look_for_a_loan()
identify_loan_by_criteria()
manually_select_loans()
optimize_bundle()
calculate_new_bundle()
identify_asked_report()
aggregate_bundles()
aggregate_loans()
aggregate_borrowers()
aggregate_lenders()
format_report()
show_report()

Loan

amount : number

interest rate : number

settlement data : date

term : date

status : text

original_value : number

principal_original : number

risk()

set_status_default()

set_status_late()

set_status_good()

discount_rate()

borrowers()

principal_remaining()

1

1..*

1

1..*

1..*

1..*

1..*

1..*

1..*

0..1

1..*

0..1

Good

Late

monthly report informing payment on time
[payment time <= due time]

receive a monthly report

Default

monthly report informing late payment
[payment time > due time + 10]

monthly report informing late payment
[due time < payment time < due time + 10]

monthly report informing late payment
[payment time > due time + 10]

monthly report informing payment on time
[payment time <= due time]

Loan State
Diagram

Fanny May :
Loan Arranger

Borrower :
Borrower

A Lender :
Specified Lender

Loan : Loan

verify_report()

new_loan(lender, borrowers)

new_

look_for_a_lender(lender)

look_for_a_loan(loan)

look_for_a_

update_loan(lender, borrower)

update_

lende
r :

new_lender(name,contact, phone_number)

update(lender)

monthly_report(lender, loans, borrowers)

identify_report_format()

Receive Monthly
Report

July 1998

AD-HOC

FORMAL

REQUIREMENTS

TEST CASES

CLASS X Y Z

Scalene 3 4 5

Isosceles 5 5 8

Isosceles 3 4 3

Isosceles 4 7 7

Eqüiláteral 2 2 2

No-triangle 1 2 3

No-triangle 5 1 4

3 5 2

Scalene Triangle:

 {<x,y,z>: (x != y) ̂(x != z) ̂(y != z)}

SOURCE

CODE

No-triangle

Software Construction
Perspectives

Travassos, G.H. (2014). Software Defects: Stay Away from them. Do Inspections!. QUATIC 2014.
Keynote. (in press)

Tacit requirements

Loan-Arranger Requirements Specification – Jan. 8, 1999

Background

Banks generate income in many ways, often by borrowing money from their depositors

at a low interest rate, and then lending that same money at a higher interest rate in the

form of bank loans. However, property loans, such as mortgages, typically have terms of

15, 25 or even 30 years. For example, suppose that you purchase a $150,000 house with

a $50,000 down payment and borrow a $100,000 mortgage from National Bank for

thirty years at 5% interest. That means that National Bank gives you $100,000 to pay the

balance on your house, and you pay National Bank back at a rate of 5% per year over a

period of thirty years. You must pay back both principal and interest. That is, the initial

principal, $100,000, is paid back in 360 installments (once a month for 30 years), with

interest on the unpaid balance. In this case the monthly payment is $536.82. Although

the income from interest on these loans is lucrative, the loans tie up money for a long

time, preventing the banks from using their money for other transactions. Consequently,

the banks often sell their loans to consolidating organizations such as Fannie Mae and

Freddie Mac, taking less long-term profit in exchange for freeing the capital for use in

other ways.

 Specified Lender

Investor

Fanny May

Receive Reports

Monthly Report

Investment Request

Request

Generate Reports

Loan Analyst

Fixed_Rate Loan

risk()
principal_remaining()

Variable_Rate Loan

principal_remaining : number

risk()
principal_remaing()

Lender

name : text
id : text
contact : text
phone_number : number

Borrower

name : text
id : number
risk : number
status : text

risk()
set_status_good()
set_status_late()
set_status_default()
borrower_status()
set_status()

Bundle

active time period : date
profit : number
estimated risk : number
total : number
loan analyst : id_number
discount_rate : number
investor_name : text
date_sold : date

risk()
calculate_profit()
cost()

Loan Arranger

rec_monthly_report()
inv_request()
generate reports()
identify_report_format()
verify_report()
look_for_a_lender()
look_for_a_loan()
identify_loan_by_criteria()
manually_select_loans()
optimize_bundle()
calculate_new_bundle()
identify_asked_report()
aggregate_bundles()
aggregate_loans()
aggregate_borrowers()
aggregate_lenders()
format_report()
show_report()

Loan

amount : number

interest rate : number

settlement data : date

term : date

status : text

original_value : number

principal_original : number

risk()

set_status_default()

set_status_late()

set_status_good()

discount_rate()

borrowers()

principal_remaining()

1

1..*

1

1..*

1..*

1..*

1..*

1..*

1..*

0..1

1..*

0..1

Good

Late

monthly report informing payment on time
[payment time <= due time]

receive a monthly report

Default

monthly report informing late payment
[payment time > due time + 10]

monthly report informing late payment
[due time < payment time < due time + 10]

monthly report informing late payment
[payment time > due time + 10]

monthly report informing payment on time
[payment time <= due time]

Loan State
Diagram

Fanny May :
Loan Arranger

Borrower :
Borrower

A Lender :
Specified Lender

Loan : Loan

verify_report()

new_loan(lender, borrowers)

new_

look_for_a_lender(lender)

look_for_a_loan(loan)

look_for_a_

update_loan(lender, borrower)

update_

lende
r :

new_lender(name,contact, phone_number)

update(lender)

monthly_report(lender, loans, borrowers)

identify_report_format()

Receive Monthly
Report

July 1998

AD-HOC

FORMAL

REQUIREMENTS

TEST CASES

CLASS X Y Z

Scalene 3 4 5

Isosceles 5 5 8

Isosceles 3 4 3

Isosceles 4 7 7

Eqüiláteral 2 2 2

No-triangle 1 2 3

No-triangle 5 1 4

3 5 2

Scalene Triangle:

 {<x,y,z>: (x != y) ̂(x != z) ̂(y != z)}

SOURCE

CODE

No-triangle

Software Construction
Perspectives

25/09/2014

13

 Software Engineers Reality...

Software Defects

Lack of Quality, due…

Software Defect
Error: a human action that produces an incorrect result.
Fault: a manifestation of an error in software.
Failure: (a) termination of the ability of a product to perform a required
function or its inability to perform within previously specified limits; or
(b) an event in which a system or system component does not perform a
required function within specified limits.

Defect:
an imperfection or deficiency in a work product where that
work product does not meet its requirements or
specifications and needs to be either repaired or replaced.
It is a fault when detected during the execution of
software

IEEE Std. 1044-2009. (2010). Classification for Software Anomalies.

25/09/2014

14

Software Defects
Most of them results from human based activities!

They are introduced due to communication or information transformation issues.
They persist into the developed and deployed software systems
Most of them can be found into those software parts rarely used/executed .

?

?

Previous

Development

Phase

Current

Phase

Next

Phase

1

2

3

4

5
6

In a generic sense, defects arise when the

development work doesn’t match software

specifications already developed or would

cause problems downstream.

1. Information transformed correctly.

2. Information lost during transformation.

3. Information transformed incorrectly.

4. Extraneous information introduced.

5. Multiple inconsistent transformations
occurred for same info.

6. Multiple inconsistent transformations
possible for same info.

Travassos, G. H., Shull, F. and Carver, J. Working with UML: A Software Design Process Based on
Inspections for the Unified Modeling Language, in Advances in Computers, vol. 54, Academic
Press, 2001

Software Defects

From where defects come from?
What types of defects we can find?

Domain
Knowledge

Software
Artifacts

Other
Domain

General
Requirements

ambiguity

extraneous

incorrect fact

omission

inconsistency

Defect General Description

Omission Necessary information about the system has been omitted from the
software artifact.

Incorrect Fact Some information in the software artifact contradicts information in
the requirements document or the general domain knowledge.

Inconsistency Information within one part of the software artifact is inconsistent
with other information in the software artifact.

Ambiguity Information within the software artifact is ambiguous, i.e. any of a
number of interpretations may be derived that should not be the
prerogative of the developer doing the implementation.

Extraneous
Information

Information is provided that is not needed or used.

Travassos, G. H., Shull, F. and Carver, J. Working with UML: A Software Design Process Based on
Inspections for the Unified Modeling Language, in Advances in Computers, vol. 54, Academic Press,
2001

25/09/2014

15

Main cause:

Information mistakenly transformed by developers.

Software Defects

class parts

inherit from Stock

items;

attributes …

services …..

relationships ...

…

3 – The gas station owner

can use the system to

control inventory. The

system will either warn of

low inventory or

automatically order new

parts and gas.

...

Fixed_Rate Loan

risk()
principal_remaining()

Variable_Rate Loan

principal_remaining : number

risk()
principal_remaing()

Lender

name : text
id : text
contact : text
phone_number : number

Borrower

name : text
id : number
risk : number
status : text

risk()
set_status_good()
set_status_late()
set_status_default()
borrower_status()
set_status()

Bundle

active time period : date
profit : number
estimated risk : number
total : number
loan analyst : id_number
discount_rate : number
investor_name : text
date_sold : date

risk()
calculate_profit()
cost()

Loan Arranger

rec_monthly_report()
inv_request()
generate reports()
identify_report_format()
verify_report()
look_for_a_lender()
look_for_a_loan()
identify_loan_by_criteria()
manually_select_loans()
optimize_bundle()
calculate_new_bundle()
identify_asked_report()
aggregate_bundles()
aggregate_loans()
aggregate_borrowers()
aggregate_lenders()
format_report()
show_report()

Loan

amount : number

interest rate : number

settlement data : date

term : date

status : text

original_value : number

principal_original : number

risk()

set_status_default()

set_status_late()

set_status_good()

discount_rate()

borrowers()

principal_remaining()

1

1..*

1

1..*

1..*

1..*

1..*

1..*

1..*

0..1

1..*

0..1

Good

Late

monthly report informing payment on time
[payment time <= due time]

receive a monthly report

Default

monthly report informing late payment
[payment time > due time + 10]

monthly report informing late payment
[due time < payment time < due time + 10]

monthly report informing late payment
[payment time > due time + 10]

monthly report informing payment on time
[payment time <= due time]

Loan State
Diagram

Fanny May :
Loan Arranger

Borrower :
Borrower

A Lender :
Specified Lender

Loan : Loan

verify_report()

new_loan(lender, borrowers)

new_

look_for_a_lender(lender)

look_for_a_loan(loan)

look_for_a_

update_loan(lender, borrower)

update_

lende
r :

new_lender(name,contact, phone_number)

update(lender)

monthly_report(lender, loans, borrowers)

identify_report_format()

Receive Monthly
Report

Loan Arranger Classes Description

Class name: Fixed_Rate Loan

 Category: Logical View

 Documentation:

 A fixed rate loan has the same interest rate over the entire term of the mortgage

 External Documents:

 Export Control: Public

 Cardinality: n

 Hierarchy:

 Superclasses: Loan

 Public Interface:

 Operations:

 risk

 principal_remaining

 State machine: No

 Concurrency: Sequential

 Persistence: Persistent

 Operation name: risk

 Public member of: Fixed_Rate Loan

 Return Class: float

 Documentation:

 take the average of the risks' sum of all borrowers related to this loan

 if the average risk is less than 1 round up to 1

 else if the average risk is less than 100 round up to the nearest integer

 otherwise round down to 100

 Concurrency: Sequential

Specification high and low level design coding

 Our Reality...

It is necessary to find and eliminate software
defects as soon as possible!

25/09/2014

16

Software Quality Assurance
Verification:

To assure product’s consistency, completeness and correctness in each
software life cycle stage and between consecutive life cycle stages

“Are we correctly building the product?”

Validation:
To assure the final product satisfies all software requirements.

“Are we building the correct product?”

Testing:
To investigate the product behavior by observing the results of its
execution.

Tacit requirements

Loan-Arranger Requirements Specification – Jan. 8, 1999

Background

Banks generate income in many ways, often by borrowing money from their depositors

at a low interest rate, and then lending that same money at a higher interest rate in the

form of bank loans. However, property loans, such as mortgages, typically have terms of

15, 25 or even 30 years. For example, suppose that you purchase a $150,000 house with

a $50,000 down payment and borrow a $100,000 mortgage from National Bank for

thirty years at 5% interest. That means that National Bank gives you $100,000 to pay the

balance on your house, and you pay National Bank back at a rate of 5% per year over a

period of thirty years. You must pay back both principal and interest. That is, the initial

principal, $100,000, is paid back in 360 installments (once a month for 30 years), with

interest on the unpaid balance. In this case the monthly payment is $536.82. Although

the income from interest on these loans is lucrative, the loans tie up money for a long

time, preventing the banks from using their money for other transactions. Consequently,

the banks often sell their loans to consolidating organizations such as Fannie Mae and

Freddie Mac, taking less long-term profit in exchange for freeing the capital for use in

other ways.

 Specified Lender

Investor

Fanny May

Receive Reports

Monthly Report

Investment Request

Request

Generate Reports

Loan Analyst

Fixed_Rate Loan

risk()
principal_remaining()

Variable_Rate Loan

principal_remaining : number

risk()
principal_remaing()

Lender

name : text
id : text
contact : text
phone_number : number

Borrower

name : text
id : number
risk : number
status : text

risk()
set_status_good()
set_status_late()
set_status_default()
borrower_status()
set_status()

Bundle

active time period : date
profit : number
estimated risk : number
total : number
loan analyst : id_number
discount_rate : number
investor_name : text
date_sold : date

risk()
calculate_profit()
cost()

Loan Arranger

rec_monthly_report()
inv_request()
generate reports()
identify_report_format()
verify_report()
look_for_a_lender()
look_for_a_loan()
identify_loan_by_criteria()
manually_select_loans()
optimize_bundle()
calculate_new_bundle()
identify_asked_report()
aggregate_bundles()
aggregate_loans()
aggregate_borrowers()
aggregate_lenders()
format_report()
show_report()

Loan

amount : number

interest rate : number

settlement data : date

term : date

status : text

original_value : number

principal_original : number

risk()

set_status_default()

set_status_late()

set_status_good()

discount_rate()

borrowers()

principal_remaining()

1

1..*

1

1..*

1..*

1..*

1..*

1..*

1..*

0..1

1..*

0..1

Good

Late

monthly report informing payment on time
[payment time <= due time]

receive a monthly report

Default

monthly report informing late payment
[payment time > due time + 10]

monthly report informing late payment
[due time < payment time < due time + 10]

monthly report informing late payment
[payment time > due time + 10]

monthly report informing payment on time
[payment time <= due time]

Loan State
Diagram

Fanny May :
Loan Arranger

Borrower :
Borrower

A Lender :
Specified Lender

Loan : Loan

verify_report()

new_loan(lender, borrowers)

new_

look_for_a_lender(lender)

look_for_a_loan(loan)

look_for_a_

update_loan(lender, borrower)

update_

lende
r :

new_lender(name,contact, phone_number)

update(lender)

monthly_report(lender, loans, borrowers)

identify_report_format()

Receive Monthly
Report

July 1998

AD-HOC

FORMAL

REQUIREMENTS

TEST CASES

CLASS X Y Z

Scalene 3 4 5

Isosceles 5 5 8

Isosceles 3 4 3

Isosceles 4 7 7

Eqüiláteral 2 2 2

No-triangle 1 2 3

No-triangle 5 1 4

3 5 2

Scalene Triangle:

 {<x,y,z>: (x != y) ̂(x != z) ̂(y != z)}

SOURCE

CODE

No-triangle

Software Construction
Perspectives

25/09/2014

17

Test Stages:
Subroutine test
Unit test
New function test
Regression test
Component test
Independent test
Performance test
Usability test
Security test
Platform test
Cloud test
Supply chain test
System test
External (beta) test
Acceptance test

Pre-Test Activities:
Inspections
Informal Peer reviews
Independent Verification and Validation (IV&V)
Static Analysis (Text and Code)
Pair Programming
Proofs of Correctness
Software Quality Assurance reviews
Editing of Technical Documents

Error Fault Failure
SOFTWARE DEFECTS

Before Coding...
Detect defects

After Coding...
Reveal failures, next
find faults

Travassos, G.H. (2014). Software Defects: Stay Away from them. Do Inspections!. QUATIC 2014.
Keynote. (in press)

Software Quality Assurance
Usually used VV&T activities:

Software review and inspections:

Systematic reading activities performed by the technical staff
with the sole objective of finding analysis and design defects
produced in the initial phases of development in software
artifacts.

Testing:
A multi-step strategy combined with methods for producing representative test
cases helping to guarantee effective defect detection.

Patterns and formal procedures: These are patterns and procedures imposed by the client, or rules

that direct how the project must be developed.

Change control: Contributes to quality by formalizing the order of changes, evaluating the nature of the

change and controlling its impact.

Software metrics: Used to trace software quality and to evaluate the impact of various methodologies and

procedures.

Registering and keeping of records: Offer information collection and dissemination procedures.
Melo, W.; Shull, F.; Travassos, G.H. (2001). Software Review Guidelines. Systems Engineering and
Computer Science Program. COPPE/UFRJ. Technical Report ES-556/01.
http://www.cos.ufrj.br/uploadfile/es55601.pdf

http://www.cos.ufrj.br/uploadfiles/es55601.pdf

25/09/2014

18

Software Inspection Method

See details in Hernandes, E. M.; Belgamo, A.; Fabbri, S.. (2014). An overview of
experimental studies on Software Inspections. Enterprise Information System.
Lecture Notes in Businees Information Processing. Vol 190, pp.118-134

Planning

Detection

Defect
Report
Form

Collection

Correction

Software
Artifact

Planning
Form

Defect
Correction

 Form

1

2

3

4

organizer

inspector

moderator
inspectors
author

author

Corrected
Software
Artifact

Software
Inspection

Defect
Collection

Form

Roles

Activities

Products

Fagan´s Process

Software Inspection Method

Sauer´s Process

25/09/2014

19

Software Inspection Method

Planning

Detection

Defect

Report

Form

Collection

Correction

Software

Artifact

Planning

Form

Defect

Correction

 Form

1

2

3

4

organizer

inspector

moderator

inspectors

author

author

Corrected

Software

Artifact Software

Inspection

Defect

Collection

Form

Roles

Activities

Products

Inspection

Techniques

Inspection Techniques: ad-hoc

Inspector reads the document accordingly its own perspective and
knowledge

Individual experience affects the final results:
Focus on the inspector expertise

Individual productivity

Hard to guarantee the inspector read the document in the correct way
because each inspector applies its own review approach

There is no document coverage guarantee

Cost/efficiency (#defects/time of inspection) tend to be better when
inspectors have high experience (> inspection cost)

25/09/2014

20

Inspection Techniques: checklist

Inspector must follow a list of items representing the software
characteristics although following an ad hoc approach (checklists
describe what to look for, but not how to look for)

More directed final result:
Quality characteristics defined a priori

Individual productivity

Hard to guarantee the inspector reads the document in the correct way even
defining the quality characteristics to be reviewed, because each inspector
applies its own review approach

Document coverage concerned with the checklist items and
inspector approach

Cost/efficiency depends on the checklist and inspectors

Checklist can be tailored or specifically built to capture a specific
quality characteristic

Inspection Techniques: checklist

Inspection Questions Yes
(Pass)

No
(Fail)

Package Designs: Does the SDD document all significant package
design decisions?

Unit Designs: Does the SDD document all significant unit design
decisions?

Thoroughly Documented: Are design decisions for the current
release documented as completely and as thoroughly as is known at
the present time? Note that information relevant to future releases
need not be completely documented.

Current TBDs: Is the acronym “TBD” used to signify that the
associated design decisions have not yet been determined and
documented?

No TBDs at Release: Does the final SDD for a release not contain
any “TBDs” for that release?

Example: Design Completeness

Software Design Document (SDD) Inspection Checklist – OPEN Process Framework

http://www.opfro.org/index.html?Components/WorkProducts/DesignSet/SoftwareDesignDocument/SoftwareDesi

gnDocumentInspectionChecklist.html~Contents

http://www.opfro.org/index.html?Components/WorkProducts/DesignSet/SoftwareDesignDocument/SoftwareDesignDocumentInspectionChecklist.html~Contents
http://www.opfro.org/index.html?Components/WorkProducts/DesignSet/SoftwareDesignDocument/SoftwareDesignDocumentInspectionChecklist.html~Contents

25/09/2014

21

Inspection Techniques: checklist
Defect Report form
Name: J.J. XPT
Used Checklist: 01
Reviewed Document: Specification Requirements for the USE CASE Tool to support PBR.
Inspection time: 2 hs

Defect
No.

Page
No.

Req.
No.

Defect
Type

Description

1 2 RF 8 Omission Missing a facility to allow the consulting of
elements model, such as folders and
hierarchical trees.

2 Omission The requirements do not deal with defects
treatments

3 3 RF 11/12 Ambiguity It is not clear the difference between
requirements 11 and 12

4 2 RF 5 Ambiguity The terms participant and actor are being
used to represent the same concept.

5 Omission It is missing a specification for the user
interface and the navigation mechanisms

Inspection Techniques: scenario-based
reading

Inspector receives a concrete set of instructions explaining how to
read and what to look for in a software product.

Increase the cost-effectiveness of inspections

More directed final result:

Quality characteristics and reading approach defined a priori

Technique induces productivity by reducing human influence on inspection
results (i.e., ensure a more engineering approach)

Provide models for writing documents of higher quality

Easier to guarantee the inspector read the document in the correct way

Document coverage concerned with the reading technique

Cost/efficiency affected by the reading technique

25/09/2014

22

More specifically, software reading is the individual analysis of a

software artifact (e.g., requirements, design, code, test plans)
to achieve the understanding needed for a particular task (
e.g., defect detection, reuse, maintenance)

Scenario-based reading is:

document and notation specific

goal driven

tailorable to the project and environment

procedurally defined

focused to provide a particular document coverage

empirically verified to be effective for its use in inspections

Inspection Techniques: scenario-based
reading

Different Software Artifacts, Different Reading Techniques

perspective based reading (PBR):

 for detecting defects in requirements documents

traceability based (horizontal/vertical) reading (OORTS):

 for detecting defects in object oriented design in UML

usability based (heuristics) reading (WDP):

 for detecting anomalies in user interface web screens

defect based reading (DBR):

 for detecting defects in requirements documents in SCR

scope based reading:

 for constructing designs from OO frameworks

Reading techniques define an approach to be tailored.

There are different set of reading techniques.

Inspection Techniques: scenario-based
reading

25/09/2014

23

Reading

Analysis

Defect
Detection

Usability

Design Requirements Code User
Interface

SCR English Screen Shot

Defect-based Perspective-based Usability-based

Inconsistent

Incorrect
Omission

Ambiguity
Tester User Developer

Novice Error Expert

Technology Technology

Family Family

General Goal General Goal

Specific Goal Specific Goal

Document Document
(artifact) (artifact)

Notation Notation
Form Form

Technique Technique

PROBLEM PROBLEM
SPACE SPACE

SOLUTION

SPACE

OO Diagrams

Traceability

Horizontal
Vertical

Inspection Techniques: scenario-based
reading

Software Inspection Techniques:
summary

Travassos, G.H. (2014). Software Defects: Stay Away from them. Do Inspections!. QUATIC 2014.
Keynote. (in press)

Technique Ad-hoc Checklist based Scenario-based
reading Features

Notation any any Language of "doing"

Systematic no partially yes

Focused no no yes

Controlled
Improvement

does not allow partially yes

Adaptable no yes yes

Training no partially yes

Tailoring no need needed whether capturing
specific quality
characteristics

needed due to the
used model

Introduction effort low medium high

Document
Coverage

no guarantee depends on checklist and
the inspector approach,

but still hard to guarantee

Controlled by the
technique

Cost-efficiency depends on
inspectors'
experience

depends on inspectors'
experience and checklist

depends on the
technique, usually

high

25/09/2014

24

Software Inspection Tool

Kalinowski, M. ; Travassos, G. H. (2004). A Computational Framework for Supporting Software Inspections. In: IEEE 19th

International Conference on Automated Software Engineering - ASE'04, IEEE Computer Press, v. 1. p. 46-55.

Evidence on Software Inspections
(academia)

Inspections significantly increase productivity, quality, and project
stability.

Fagan´s law

Effectiveness of Inspections is fairly independent of its organizational
form.

Porter-Votta’s law

Perspective-based inspections are (highly) effective and efficient.
Basili´s law

A combination of different V&V methods outperforms any single
method alone.

Hetzel-Myers law

Endres, A; Rombach, D. (2003). A Handbook of Software and Systems Engineering:
Empirical Observations, Laws and Theories. Fraunhofer IESE Series on Software
Engineering. Pearson/Addison Wesley.ISBN 0321154207

25/09/2014

25

• Quality entails productivity.
– Mills-Jones hypothesis

• Error prevention is better than error removal.

– May’s hypothesis

• Proving of programs solves the problems of correctness,
documentation, and compatibility.
– Hoare’s hypothesis

• Approximately 80 percent of defects come from 20 percent of
modules.
– Pareto–Zipf-type laws

Endres, A; Rombach, D. (2003). A Handbook of Software and Systems Engineering:
Empirical Observations, Laws and Theories. Fraunhofer IESE Series on Software
Engineering. Pearson/Addison Wesley.ISBN 0321154207

Evidence on Software Inspections
(academia)

Travassos, G.H. (2014). Software Defects: Stay Away from them. Do Inspections!. QUATIC 2014.
Keynote. (in press)

Company
Software
Category

Inspected Artifact Results

AT&T Telecom
Requirements,

design, code and
testing

Inspection has increased productivity
and quality by 14%, being 20x more

efficient than testing.

HP Varied
Design, code,

testing,
documentation

An audit revealed an ineffective
inspection process. Problems under

discussion.

Code
2 defects detected per hour. It is

unlikely that 80% of defects could be
caught by testing.

BRN Telecom Code
1 defect detected per hour. The process

was 20x more efficient than testing.

Bull HN
Information

Systems

Operating
system

Requirements,
design, code,

testing,
documentation.

4 people’s teams were twice as efficient
as the one composed of 3.

Evidence on Software Inspections
(industry)

25/09/2014

26

Travassos, G.H. (2014). Software Defects: Stay Away from them. Do Inspections!. QUATIC 2014.
Keynote. (in press)

Company
Software
Category

Inspected Artifact Results

IBM
Operating

system
Design and code

23% increasing in code productivity and
38% reduction of defects found in test

stage.

ICL

Operating
system

Design

40% to 50% increasing in defect
detection. 1.2 hours per defect in

inspection compared to 8.4 hours with
testing.

JPL
Space
system

Requirements,
design, code, testing

0.5 hours to find defects versus 5 hours
for other techniques.

MEL Varied Design, code
ROI calculated at 8:1. In 75 inspections

the result was 7000 hours saved.

Shell
Research

Geophysical
software

Requirements
1 defect found every 3 minutes. Return

on investment calculated at 30:1.

Evidence on Software Inspections
(industry)

Tacit requirements

Loan-Arranger Requirements Specification – Jan. 8, 1999

Background

Banks generate income in many ways, often by borrowing money from their depositors

at a low interest rate, and then lending that same money at a higher interest rate in the

form of bank loans. However, property loans, such as mortgages, typically have terms of

15, 25 or even 30 years. For example, suppose that you purchase a $150,000 house with

a $50,000 down payment and borrow a $100,000 mortgage from National Bank for

thirty years at 5% interest. That means that National Bank gives you $100,000 to pay the

balance on your house, and you pay National Bank back at a rate of 5% per year over a

period of thirty years. You must pay back both principal and interest. That is, the initial

principal, $100,000, is paid back in 360 installments (once a month for 30 years), with

interest on the unpaid balance. In this case the monthly payment is $536.82. Although

the income from interest on these loans is lucrative, the loans tie up money for a long

time, preventing the banks from using their money for other transactions. Consequently,

the banks often sell their loans to consolidating organizations such as Fannie Mae and

Freddie Mac, taking less long-term profit in exchange for freeing the capital for use in

other ways.

 Specified Lender

Investor

Fanny May

Receive Reports

Monthly Report

Investment Request

Request

Generate Reports

Loan Analyst

Fixed_Rate Loan

risk()
principal_remaining()

Variable_Rate Loan

principal_remaining : number

risk()
principal_remaing()

Lender

name : text
id : text
contact : text
phone_number : number

Borrower

name : text
id : number
risk : number
status : text

risk()
set_status_good()
set_status_late()
set_status_default()
borrower_status()
set_status()

Bundle

active time period : date
profit : number
estimated risk : number
total : number
loan analyst : id_number
discount_rate : number
investor_name : text
date_sold : date

risk()
calculate_profit()
cost()

Loan Arranger

rec_monthly_report()
inv_request()
generate reports()
identify_report_format()
verify_report()
look_for_a_lender()
look_for_a_loan()
identify_loan_by_criteria()
manually_select_loans()
optimize_bundle()
calculate_new_bundle()
identify_asked_report()
aggregate_bundles()
aggregate_loans()
aggregate_borrowers()
aggregate_lenders()
format_report()
show_report()

Loan

amount : number

interest rate : number

settlement data : date

term : date

status : text

original_value : number

principal_original : number

risk()

set_status_default()

set_status_late()

set_status_good()

discount_rate()

borrowers()

principal_remaining()

1

1..*

1

1..*

1..*

1..*

1..*

1..*

1..*

0..1

1..*

0..1

Good

Late

monthly report informing payment on time
[payment time <= due time]

receive a monthly report

Default

monthly report informing late payment
[payment time > due time + 10]

monthly report informing late payment
[due time < payment time < due time + 10]

monthly report informing late payment
[payment time > due time + 10]

monthly report informing payment on time
[payment time <= due time]

Loan State
Diagram

Fanny May :
Loan Arranger

Borrower :
Borrower

A Lender :
Specified Lender

Loan : Loan

verify_report()

new_loan(lender, borrowers)

new_

look_for_a_lender(lender)

look_for_a_loan(loan)

look_for_a_

update_loan(lender, borrower)

update_

lende
r :

new_lender(name,contact, phone_number)

update(lender)

monthly_report(lender, loans, borrowers)

identify_report_format()

Receive Monthly
Report

July 1998

AD-HOC

FORMAL

REQUIREMENTS

TEST CASES

CLASS X Y Z

Scalene 3 4 5

Isosceles 5 5 8

Isosceles 3 4 3

Isosceles 4 7 7

Eqüiláteral 2 2 2

No-triangle 1 2 3

No-triangle 5 1 4

3 5 2

Scalene Triangle:

 {<x,y,z>: (x != y) ̂(x != z) ̂(y != z)}

SOURCE

CODE

No-triangle

Software Construction
Perspectives

25/09/2014

27

Verification, Validation and Testing

Artifacts Architecture Requirements Design Source
Code

Document

Activity

Inspections

Requirement 5% 87% 10% 5% 8.5%

Architecture 85% 10% 10% 2.5% 12%

Design 10% 14% 87% 7% 16%

Code 12.5% 15% 20% 85% 10%

Static
Analysis

2% 2% 7% 87% 3%

IV&V 10% 12% 23% 7% 18%

SQA Review 10% 17% 17% 12% 12.5%

Pre-Test Activities Efficiency

1.Adapted from Capers Jones. (2014). The Ranges and Limits of Software Quality.

Available at http://Namcookanalytics.com.

Verification, Validation and Testing
Test Stages Efficiency

1.Adapted from Capers Jones. (2014). The Ranges and Limits of Software Quality.

Available at http://Namcookanalytics.com.

Artifacts Architecture Requirements Design Source Code Document

Testing Stages

Unit 2.5% 4% 7% 35% 10%

Function 7.5% 5% 22% 37.5% 10%

Regression 2% 2% 5% 33% 7.5%

Integration 6% 20% 22% 33% 15%

Performance 14% 2% 20% 18% 2.5%

Security 12% 15% 23% 8% 2.5%

Usability 12% 17% 15% 5% 48%

System 16% 12% 18% 12% 34%

Cloud 10% 5% 13% 10% 20%

Independent 12% 10% 11% 10% 23%

Field (Beta) 14% 12% 14% 12% 34%

Acceptance 13% 14% 15% 12% 24%

http://namcookanalytics.com/
http://namcookanalytics.com/

25/09/2014

28

Final Remarks
• Software Technology decisions shall be based on

evidence.

• Investigations in software engineering share some of the
same issues as social science (inspired on…):

– difficult to collect data

– non-repeatable

– difficult to control

• The more we care with defect removal
– the more confidence we can have in the quality of our products

– the better can be our projects

– the more effective will be our actions

58

Conclusion

Your mission: TO DETECT AND REMOVE DEFECTS!

Learn with them!!!!

Promote inspections as much you can and permit moderated
empiricism to support your research, development and decision

making:

it can help to reduce software systems fails and contribute to the
advance of the field.

There is no silver
bullet!!

There is no philosopher’s
stone!!

25/09/2014

29

Software defects:
Stay Away from them.

Do Inspections!

Guilherme Horta Travassos
Universidade Federal do Rio de Janeiro

COPPE/PESC

CNPq Researcher, ISERN Member

ght@cos.ufrj.br

www.cos.ufrj.br/~ght

QUATIC 2014

Obrigado por sua atenção.

mailto:ght@cos.ufrj.br
http://www.cos.ufrj.br/~ght

