25/09/2014

@ QUATIC 2014

Software defects:

Stay Away from them.
Do Inspections!

Guilherme Horta Travassos

Universidade Federal do Rio de Janeiro el
COPPE/PESC
CNPq Researcher, ISERN Member
; ght@cos.ufrj.br
. . -. tNg r o .
e U www.cos.ufr].br. ht PE'SC

Agenda

Software Systems
Characteristics
Software Engineers Reality

Software Systems Development Issues
Software Defects
Inspection Method and Techniques

Evidence on Software Inspections (academia and
industry)

Conclusion

&
i -

mailto:ght@cos.ufrj.br
http://www.cos.ufrj.br/~ght

25/09/2014

Software Systems
used largely by people other than - ‘Q/o‘f

developers Q
\9‘(\

Axground SO a

\
QSQ’ provided

users may be from differe

proper user interface r
0\9

portability is kev ‘Q,

«3

It must be & .ghly verified, validated and tested
before i: ()o.atlonal use

@ €corre
Ll § Pss_t.

Software Systems

Early years 4
Custom Software ~ Third Stage Fifth Stage
Standalone Distributed Systems Multi-skilled, geographically distributed
Batch Embedded “intelligence development
Low cost hardware ;
Componentry (reuse and recycling)
aeﬁif":grsmge Consumer Impact Development and evolution models,
R:al-t?me including biological analogies
" Fourth Stage Interdependence among design, business,

Database Powerful desk-top systems and evaluation
Product Software opject-oriented technologies Agile software manufacture

Expert systems Empowering the domain expert (vs.

Artificial neural networks maintaining integrity)

Parallel computing Non-scripting development languages

Sixth Stage Network computers
“mobile” apps

Large Scale Science (e-science) with intensive use of e-infrastructure
Ubiquitous Systems (systems of systems)

A

1950 1960 1970 1980 1990 2000 2022
oL [PESC Approach”, Euroj

Software Systems

System Software Real-Time Software
Business Software Embedded Software
Engineering and Scientific Software
Personal Computer Software

Artificial Intelligence Software

Ubiquitous Software = Mobile Apps

Systems of Systems

Stable core / R

L [[
A A
SR N2 3% T
P A 5
s Rmé\“‘wk i i . ,-'%?‘ ‘ I
1950 1960 1970 1980 1990 2000 2010 2022

&corpe
= Adapted from P
. L PESC Approach”, Euroj

25/09/2014

25/09/2014

Some Software Systems
Characteristics

Software can not be manufactured (in the classical sense)

Some Software Systems
Characteristics

Software doesn’t “wear out”, but it deteriorates

Software

.21 Rersc

25/09/2014

Some Software Systems
Characteristics

Custom-built rather than assembled from existing
(quality) components

Some Software Systems
Characteristics

Computers everywhere demand softv 3(\6 ve made
society increasingly depender® e hility

Hardwe _nts continue to outpace our ability to build
software “.ardware’s potential

& .
i —

25/09/2014

Software Engineers Reality...
Call Before You Smash |

/% \

All software systems fail...

@ €corre

L § PES_C.

All software systems fail...

* A full list of evidence at http://catless.ncl.ac.uk/Risks/

— John Oates, Who's to blame this time? *The Register*, ~ “The
London Stock Exchange has suffered yet another systems ~ high
and dry since 9.30 this morning. The Exchange last wer”)
and took almost the entire day to get back online. T
Exchange's busiest days, was the day after the $” q
Freddie Mac and Fannie Mae, leading to Iots

operation at 14.00.]”)
’&“\

— Hacking ring steals $9 million fr~
release, a global ring of hackers ’ ‘
company, stole PIN number- ((\o

USD from over 2000 ATV

justice.)” Q\S

. FBI press
S* o*%dit processing
P ‘(o d to steal 9 million

‘o >t been brought to

— Total Parentr \)S Lal parenteral nutrition
(intravenou cr and there are tools to assist in the
preparation « \ \ such nutrition is typically administered
weeks to years C > to change frequently (in instances, daily)
and because pau .c of treatment are invariably quite ill, even
relatively small fla .ions can produce significant physiological

disturbances.”

@ tCOPFE i
o REESC ‘

http://catless.ncl.ac.uk/Risks/

25/09/2014

Software Systems:
related persistent problems
We struggle to build high reliability and quality software

However, our ability to support and enhance existing <~ “tware is still
threatened by poor design and insufficient resourc~ *

0»,0
OQ 0 60-100x
Software V EFREFFEFFErES
Changing \ AR
Relative Costs

1.5-6x

e, e, e, 2, e]
S
SR
o o e o e e o R

e e e o e
bt
LRty
S

SRR

S

E
e
E

e
CEhe

4+

o e

Specification Development After Deployment

@ €corre

o PESC

Software Engineers Reality...

,
All softll'&@\ .ems fail...

@ acowz

e BEESS

Software Engineers Reality...

Software systems construction
does not follow a smooth
pathway...

Software Systems Construction

In general, it follows a Software
Development Process specifying:

the adopted software life-cycle and paradigm
the software technologies (methods, tools) to be
used throughout the development time

who participates (roles) and when

the management, quality and verification,
validation and testing plans

It defines how multiple developers can communicate and cooperate

@) & coeee ‘
S RPESC \

25/09/2014

25/09/2014

Software Systems Construction

Some software life-cycle shapes

=
Y\ A

= — T
—
=~

? I" Programs Design E= o \
T B o N
L

_______________ validation
Requirements Analysis e ...
l-» verification "t
1 System Design | <~ -
1
1

N
l Unit and Integration Testing l \

”””””””””””” LL> System Testing
Acceptance Testing
Deployment and

Maintenance

@ €corre
L § Pss_t.

Software Engineers Reality...

@
b®°
Software DP ‘@ o, ‘ocesses
demand s ¢0 qo @z ologies, but...
0
S b o\
NI
PR

@ acowz
o REESC

25/09/2014

Some Software Technologies Pitfalls...

As it has been recently commented by Forrest Shull (Keynote at ICGSE, 2012):

Requirements Elicitation: 30 studies covering 43 different techniques over 20
years of research

Dieste, O., Juristo, N., and Shull, F. “Understanding the Customer: What Do
We Know about Requirements Elicitation?” IEEE Software, vol. 25, no. 2, pp.
11-13, March/April 2008.

SW Process Capability/Maturity Models: 61 studies; 52 process models.

von Wangenheim, C., Hauck, J., Zoucas, A., Salviano, C.,
McCaffery, F., and Shull, F. “Creating Software Process Capability / Maturity
Models,” IEEE Software, vol. 27, no. 4, pp. 92-94, July / August 2010.

Distributed SW Development: “Few of the models from our review were
evaluated...”

Prikladnicki, R., Audy, J. L. N., and Shull, F. “Patterns in Effective
Distributed Software Development,” IEEE Software, vol. 27, no. 2, pp. 12-15,
March / April 2010.

SPL Testing Technigues: 60% of papers describe “solutions or conceptual

proposals,” while “just a few” report experiences from real development
environments.

da Mota Silveira Neto, P.A.; Runeson, P.; do Carmo Machado, I.; de Almeida,
E.S.; de Lemos Meira, S.R.; Engstrom, E.; , "Testing Software Product Lines,"
Software, IEEE , vol.28, no.5, pp.16-20, Sept.-Oct. 2011.

@ €corre
L § Pss_tl

Some Software Technologies Pitfalls...

And also observed in some of our investigations:

Cost Estimation Models: 11 studies (including 2 replications) using different data

sets. No evidence about feasibility of models nor possibility of aggregation

Kitchenham, B. ; Mendes, E. ; Travassos, G. H. (2007).
Cross versus within-company cost estimation studies: A systematic review. IEEE Transactions on Software Engineering, v. 33, p. 316-329, 2007.

http://dx.doi.org/10.1109/TSE.2007.1001

Model based Testing: from 85 selected papers (representing 71 approaches), 27%
are speculative, 45% just present simple using examples, 15% show proof of
concepts, 5% report some experience and 8% have been experimented.

Dias Neto, A. C. ; Subramanyan, R. ; Vieira, M. E. R. ; Travassos, G. H. ; Shull, F. .(2008)
Improving evidence about software technologies: A look at model-based testing. IEEE Software, v. 25, p. 10-13, 2008.
http://dx.doi.org/10.1109/MS.2008.64

Testing Stop Criteria: 74 criteria (3 repeated) resulting in 108 variations. Most of
them regard software reliability. Others are specific. Just 27% have been

evaluated, without evidence about their feasibility (no context indication)
Vidigal, V., Travassos, G. H. (2013). A quasi -systematic review on Testing Stop Criteria. WAMPS 2013.

@ tCOPFE
o REESC ‘

10

http://lattes.cnpq.br/4143582724454168
http://lattes.cnpq.br/9112415346373126

Software Develor ¢$ O

25/09/2014

Some Software Technologies Pitfalls...

And also observed in some of our investigations:

Agility Characteristics and Agile Practices: More relevant characteristics to
introduce agility in software processes are concerned with communication,
understandability and adaptation (not with agile methods). The agile practices

Presence of Client and Planning Poker are not relevant. However, Continuous
Integration and Backlog are highly relevant.

De Mello, R.M.; Silva, P.C.; Travassos, G.H. (2014).
Agility in Software Processes: Evidence on Agility Characteristics and Agile Practices. SBQS 2014

Estimation of Software Testing Effort: There is no consensus about software
testing and what can be considered effort regarding it. Therefore, current

models and factors are not generically adequate and to use one or another
model is risky.

Souza, T.S.; Ribeiro, V. V.; Travassos, G.H. (2014).
Software Testing Estimation Effort: Models, Factors and Uncertainties. CACIC 2014 (in press)

@ €corre

e NEESS

Software Engineers Reality...

& Qs require
communicat’ . = 0‘ ¢ *,g.\,ration among
devr P O".eholders...
€

@ aCOPPE

R

IPESC

11

25/09/2014

Software Construction

q FORMAL
Perspectlves Scalene Triangle:
{sxyiz>t (x1=y) A (x1=2) A (y 1= 2)}
REQUIREMENTS

Loan-Arranger Requirements Specification — Jan. 8, 1999 ERRr—
A= TEST CASES

Ciass X I

Sesene S I B

. 5 I

seles s I B

[4 i B

Equiiterl) . | -

Newrlungle |) s

Newnge | S } L
Newnge | 5 ;

Software Construction

a FORMAL
Perspectlves Scalene Triangle:
{<xyz> (x1=y) A (x1=2) A (y 1= 2)}
REQUIRE S

-Arranger Requirements Specification — Jan 8, 1999

TEST CASES

cLAss X

Sealene

Tsosceles

12

25/09/2014

Software Engineers Reality...

Lack of Quality, due...

30’ tware BE’ECtS

@ €corre
L § Pss_tl

Software Defect

Error: a human action that produces an incorrect result.
Fault: a manifestation of an error in software.

Failure: (a) termination of the ability of a product to perform a required
function or its inability to perform within previously specified limits; or
(b) an event in which a system or system component does not perform a
required function within specified limits.

Defect:

an imperfection or deficiency in a work product where that
work product does not meet its requirements or
specifications and needs to be either repaired or replaced.

It is a fault when detected during the execution of
software

@ tCOPFE
= PESC IEEE Std. 1044-2009. (2

13

25/09/2014

Software Defects

Most of them results from human based activities!
They are introduced due to communication or information transformation issues.
They persist into the developed and deployed software systems
Most of them can be found into those software parts rarely used/executed .

In a generic sense, defects arise when the
development work doesn’t match software
specifications already developed or would

Previous

cause problems downstream. Development Current Next
1. Inf ti t f d tl Phase Phase Phase
. Information transformed correctly.
: . o N N N
2. Information lost during transformation. 1 >
3. Information transformed incorrectly. O 2—> /v®
4. Extraneous information introduced. ——"] S =
5. Multiple inconsistent transformations | 6 —
occurred for same info. —

6. Multiple inconsistent transformations \O
possible for same info.
acopns Travassos, G. H., Shull, F. a
. Inspections for the U
5o L PESC Press, 2001

Software Defects

Requirements

Software
Artifacts

From where defects come from? . __w S~
inconsistency \ ~a
What types of defects we can find? 4 ambiguity
Defect General Description
Omission Necessary information about the system has been omitted from the

software artifact.

Incorrect Fact | Some information in the software artifact contradicts information in
the requirements document or the general domain knowledge.

Inconsistency | Information within one part of the software artifact is inconsistent
with other information in the software artifact.

Ambiguity Information within the software artifact is ambiguous, i.e. any of a
number of interpretations may be derived that should not be the
prerogative of the developer doing the implementation.

Extraneous Information is provided that is not needed or used.
Information

& coepe Travassos, G. H., Shull, F. and Caj
- Inspections for the Unified
o LPESC 2001)

14

25/09/2014

Software Defects

Main cause:
Information mistakenly transformed by developers.

3 — The gas station owner

can use the system to 1
control inventory. The
system will either warn of 1 class parts
low inventory or 0 3
automatically order new ! inherit from Stock
parts and gas. | items;
I attributes ...
A= 1 services
i] relationships ...
|
Specification high and low level design coding

Our Reality...

%
It is necessary to fi- $ eliminate software
defe- Q\ oon as possible!

@ _3cows
oo BPESG

15

25/09/2014

Software Quality Assurance

Verification:

To assure product’s consistency, completeness and correctness in each
software life cycle stage and between consecutive life cycle stages

“Are we correctly building the product?”

Validation:

To assure the final product satisfies all software requirements.

“Are we building the correct product?”

(connanes)

Testing: Soird

To investigate the product behavior by observing the results of its
execution.

&
X B

Software Construction FORMAL

Perspectives Scalene Triangle:
{sxyz>: (x1=y) A (x 1=2) A (y 1= 2)}
REQUIREMENTS

Lo equirements Specification — Jan., 1999

s - e TEST CASES
(9

cLAss X v z

acksround

3

&) e

T RPESS

16

Pre-Test Activities:

Inspections
Informal Peer reviews

Independent Verification and Validation (IV&V) After cOding."

Static Analysis (Text and Code) .

Pair Programming Reveal failures, next
Proofs of Correctness find faults

Software Quality Assurance reviews
Editing of Technical Documents

8

T

SOFTWARE DEFECTS

[—

Error Failure

Test Stages:
Subroutine test
Unit test
New function test
Regression test
Component test
Independent test
Performance test
Usability test
Security test
Platform test
Cloud test
Supply chain test
System test
External (beta) test

aCOPFE
- Travassos, G.H. (2014). So
[PESC Keynote. (in press)

Before Coding...
Detect defects

Software Quality Assurance

Usually used VV&T activities:

R

Software review and inspections:
Systematic reading activities performed by the technical staff
with the sole objective of finding analysis and design defects
produced in the initial phases of development in software
artifacts.

Testing:
A multi-step strategy combined with methods for producing representative test
cases helping to guarantee effective defect detection.

Patterns and formal procedures: These are patterns and procedures imposed by the client, or rules
that direct how the project must be developed.

Cha nge control: Contributes to quality by formalizing the order of changes, evaluating the nature of the
change and controlling its impact.

Software metrics: Used to trace software quality and to evaluate the impact of various methodologies and
procedures.

Registering and keeping of records: offer information collection and dissemination procedures.

€ corpe Melo, W.; Shull, F.; Travasso:
- Computer Science Program.
PESC http: i

25/09/2014

17

http://www.cos.ufrj.br/uploadfiles/es55601.pdf

25/09/2014

Software Inspection Method

Artifact
Fagan’s Process
' paing
organizer,

Defect
Collection
Roles
Software Defect
o @ Corrected
Activities nspectlon . Correction>{ software
i author Artifac
roaucts
@ €copre See details
i experi
e ERES Lectur:

Software Inspection Method

g
Planning Sauer s Process
=
Discovery i
3
Collection
= 2
Moderator, | —
Inspectors, Discrimination
Author

5
D Role l 6
:| Activity Follow-up
s

18

Software Inspection Method

Artifact
v
A 1
organizer Planning
s -

Inspection

Collection

Roles
] 2 < I
Activities (Correctiol
Software author Correction Form
Inspection

Products

Inspection Techniques: ad-hoc

Inspector reads the document accordingly its own perspective and
knowledge
Individual experience affects the final results:

Focus on the inspector expertise

Individual productivity
Hard to guarantee the inspector read the document in the correct way

because each inspector applies its own review approach

There is no document coverage guarantee

Cost/efficiency (#defects/time of inspection) tend to be better when
inspectors have high experience (> inspection cost)

& .
i —

25/09/2014

19

Inspection Techniques: checklist

Inspector must follow a list of items representing the software
characteristics although following an ad hoc approach (checklists
describe what to look for, but not how to look for)
More directed final result:

Quality characteristics defined a priori

Individual productivity

Hard to guarantee the inspector reads the document in the correct way even
defining the quality characteristics to be reviewed, because each inspector
applies its own review approach

Document coverage concerned with the checklist items and
inspector approach

Cost/efficiency depends on the checklist and inspectors

Checklist can be tailored or specifically built to capture a specific
quality characteristic

@ €corre]
He- M Pss_tl

Inspection Techniques: checklist

Example: Design Completeness

Inspection Questions Yes No
(Pass) | (Fail)

Package Designs: Does the SDD document all significant package
design decisions?

Unit Designs: Does the SDD document all significant unit design
decisions?

Thoroughly Documented: Are design decisions for the current
release documented as completely and as thoroughly as is known at
the present time? Note that information relevant to future releases
need not be completely documented.

Current TBDs: Is the acronym “TBD"” used to signify that the
associated design decisions have not yet been determined and
documented?

No TBDs at Release: Does the final SDD for a release not contain
any “TBDs” for that release?

Software Design Document (SDD) Inspection Checklist— OPEN Process Framework
http://www.opfro.org/index.html?Components/WorkProducts/DesignSet/SoftwareDesignDocument/SoftwareDesi

& nDocumentlnspectionCheckli =
@ Ccorpe
T RPESS

25/09/2014

20

http://www.opfro.org/index.html?Components/WorkProducts/DesignSet/SoftwareDesignDocument/SoftwareDesignDocumentInspectionChecklist.html~Contents
http://www.opfro.org/index.html?Components/WorkProducts/DesignSet/SoftwareDesignDocument/SoftwareDesignDocumentInspectionChecklist.html~Contents

Inspection Techniques: checklist

Defect Report form

Name: J.J. XPT

Used Checklist: 01

Reviewed Document: Specification Requirements for the USE CASE Tool to support PBR.

Inspection time: 2 hs

Defect | Page | Req. Defect Description

No. No. No. Type

1 2 RF 8 Omission Missing a facility to allow the consulting of
elements model, such as folders and
hierarchical trees.

2 Omission The requirements do not deal with defects
treatments

3 3 RF 11/12 | Ambiguity It is not clear the difference between
requirements 11 and 12

4 2 RF 5 Ambiguity The terms participant and actor are being
used to represent the same concept.

5 Omission It is missing a specification for the user
interface and the navigation mechanisms

@ €corre

o LPESC

Inspection Techniques: scenario-based

Inspector receives a concrete set of instructions explaining how to

reading

read and what to look for in a software product.
Increase the cost-effectiveness of inspections

More directed final result:
Quiality characteristics and reading approach defined a priori

Technique induces productivity by reducing human influence on inspection

results (i.e., ensure a more engineering approach)
Provide models for writing documents of higher quality

Easier to guarantee the inspector read the document in the correct way

Document coverage concerned with the reading technique
Cost/efficiency affected by the reading technique

@ _3cows

T RPESS

25/09/2014

21

25/09/2014

Inspection Techniques: scenario-based
reading

More specifically, software reading is the individual analysis of a
software artifact (e.g., requirements, design, code, test plans)
to achieve the understanding needed for a particular task (
e.g., defect detection, reuse, maintenance)

Scenario-based reading is:

document and notation specific

goal driven

tailorable to the project and environment

procedurally defined

focused to provide a particular document coverage
empirically verified to be effective for its use in inspections

@ €corre ‘
o Heesc w

Inspection Techniques: scenario-based

reading

Different Software Artifacts, Different Reading Techniques
perspective based reading (PBR):

for detecting defects in requirements documents
traceability based (orizontaierticay reading (OORTS):

for detecting defects in object oriented design in UML
usability based (euisics) reading (WDP):

for detecting anomalies in user interface web screens
defect based reading (DBR):

for detecting defects in requirements documents in SCR
scope based reading:

for constructing designs from OO frameworks

@ . & coeee Readin
L PESC Th

22

Inspection Techniques: scenario-based
reading

Readin, Technology
PROBLEM / \
SPACE i General Goal
Defect Usability Specific Goal
Detection
Design Requirements Code User Doc.u ment
Interface (artifact)
OO Diagrams .
SCR English Screen Shot Notation
/ / Form
Tracgabili)
SOLUTION 4 Defect-based Perspective-based Usability-based ~ Family
SPACE
Horizontal

@ €corre

o LPESC

Vertical

Omission

Incorrect

Ambiguity Inconsistent

Expert Novice Error P
echnique
Developer Tester User q

Software Inspection Techniques:
summary

@ Ecorre

T RPESS

Travassos, G.H. (2014).
Keynote. (in press)

Technique Ad-hoc Checklist based Scenario-based
Features reading
Notation any any Language of "doing"
Systematic no partially yes
Focused no no yes
Controlled does not allow partially yes
Improvement
Adaptable no yes yes
Training no partially yes
Tailoring no need needed whether capturing | needed due to the

specific quality used model
characteristics
Introduction effort low medium high
Document no guarantee depends on checklist and Controlled by the
Coverage the inspector approach, technique
but still hard to guarantee
Cost-efficiency depends on depends on inspectors' depends on the
inspectors' experience and checklist technique, usually
experience high

s_

25/09/2014

23

25/09/2014

Software Inspection Tool

External Tools Tools x. XMapper
PBR Tool ORION (OORTs Support)
- (Ppo XSLT Processor

===
Driver XSLT Generated by ﬁ
Xmapper b

Xx

(=
&= |

T ISPIS's XML
Loads

Provides

Planning Discove Collection Discrimination Rework Follow-up

WEB I

8 3 3 4 pace® S5 9\3;/

- Y -
g . X Moderator, 2
i - D '\/ Inspectors, ‘
Moderator Inspector Moderator Auther Author Moderator

. Kalinowski, M. ; Travassos, C
5o L PESC International Conference on /

Evidence on Software Inspections

(academia)
Inspections significantly increase productivity, quality, and project
stability.
Fagan’s law

Effectiveness of Inspections is fairly independent of its organizational

form.
Porter-Votta’s law

Perspective-based inspections are (highly) effective and efficient.
Basili’s law

A combination of different V&V methods outperforms any single

method alone.
Hetzel-Myers law

@ 85009! Endres,
i leesc £

24

Evidence on Software Inspections
(academia)

* Quality entails productivity.
— Mills-Jones hypothesis

* Error prevention is better than error removal.
— May’s hypothesis

* Proving of programs solves the problems of correctness,

documentation, and compatibility.
— Hoare’s hypothesis

* Approximately 80 percent of defects come from 20 percent of

modules.
— Pareto—Zipf-type laws

@ acoppa Endres, A; Rom|
Empirical
5o | PESC Engineeril

Evidence on Software Inspections

(industry)
Company Sofbwaie Inspected Artifact Results
Category
Requirements, Inspection has increased productivity
AT&T Telecom design, code and and quality by 14%, being 20x more
testing efficient than testing.
Design, code, An audit revealed an ineffective
HP Varied testing, inspection process. Problems under
documentation discussion.
2 defects detected per hour. It is
Code unlikely that 80% of defects could be
caught by testing.
1 defect detected per hour. The process
BRN [Eecom ool was 20x more efficient than testing.
Bull HN Requirements,
. Operating design, code, 4 people’s teams were twice as efficient
Information f
system testing, as the one composed of 3.
Systems .
documentation.

aCOPPE
Travassos, G.H. (2014). Softw:
o _Pl:sc_ Keynote. (in press)

25/09/2014

25

Evidence on Software Inspections

(industry)
Compan Soft Inspected Artifact Results
pany Category P
Oberatin 23% increasing in code productivity and
IBM P & Design and code 38% reduction of defects found in test
system
stage.
40% to 50% increasing in defect
Operating Design detection. 1.2 hours per defect in
ICL system g inspection compared to 8.4 hours with
testing.
Space Requirements, 0.5 hours to find defects versus 5 hours
JPL . . .
system design, code, testing for other techniques.
5 . ROI calculated at 8:1. In 75 inspections
MEL faiisd Desisn, code the result was 7000 hours saved.
Shell Geophysical Requirements 1 defect found every 3 minutes. Return
Research software q on investment calculated at 30:1.

€corre
- Travassos, G.H. (2014)
Keynote. (in press)

o LPESC

Software Construction
Perspectives

REQUIRE

acksround

Gan-Arranger Requirements Specification — Jan xb

S

FORMAL
Scalene Triangle:

{<x,y,z> (x!=y) N (x!1=2) A (y 1= 2)}

F
s TEST CASES
(&)

25/09/2014

26

T

Verification, Validation and Testing
Pre-Test Activities Efficiency

Artifacts | Architecture | Requirements | Design Source Document
Activity Code
Inspections
Requirement 5% 87% 10% 5% 8.5%
Architecture 85% 10% 10% 2.5% 12%
Design 10% 14% 87% 7% 16%
Code 12.5% 15% 20% 85% 10%
Static 2% 2% 7% 87% 3%
Analysis
IV&V 10% 12% 23% 7% 18%
SQA Review 10% 17% 17% 12% 12.5%

@ €corre

[IPEsc

e

Available at http:/i

Verification, Validation and Testing
Test Stages Efficiency

25/09/2014

Artifacts | Architecture | Requirements | Design | Source Code | Document
Testing Stages
Unit 2.5% 4% 7% 35% 10%
Function 7.5% 5% 22% 37.5% 10%
Regression 2% 2% 5% 33% 7.5%
Integration 6% 20% 22% 33% 15%
Performance 14% 2% 20% 18% 2.5%
Security 12% 15% 23% 8% 2.5%
Usability 12% 17% 15% 5% 48%
System 16% 12% 18% 12% 34%
Cloud 10% 5% 13% 10% 20%
Independent 12% 10% 11% 10% 23%
Field (Beta) 14% 12% 14% 12% 34%
Acceptance 13% 14% 15% 12% 24%
. L PESC Available at http:/

27

http://namcookanalytics.com/
http://namcookanalytics.com/

Final Remarks

» Software Technology decisions shall be based on
evidence.
* Investigations in software engineering share some of the
same issues as social science (inspired on...):
— difficult to collect data
—non-repeatable
— difficult to control
* The more we care with defect removal
—the more confidence we can have in the quality of our products
—the better can be our projects
—the more effective will be our actions

@ €corre

o LPESC

Conclusion

There is no silver
bullet!!

There is no philosopher’s
stone!!

Your mission: TO DETECT AND REMOVE DEFECTS!
Learn with them!!!!
Promote inspections as much you can and permit moderated
empiricism to support your research, development and decision

making:

it can help to reduce software systems fails and contribute to the
advance of the field.

@ _3cows
s Heesc '

25/09/2014

28

Software defects:
Stay Away from them.

Do Inspections!

Obrigado por sua atencéo.

Guilherme Horta Travassos
Universidade Federal do Rio de Janeiro Qcveq
COPPE/PESC
CNPq Researcher, ISERN Member
ght@cos.ufrj.br
www.cos.ufrj.br/~ght

QUATIC 2014

_Bcorre
g fresc

25/09/2014

29

mailto:ght@cos.ufrj.br
http://www.cos.ufrj.br/~ght

